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Abstract. The paper proposed a new Recurrent Neural Network (RNN) model
for systems identification and states estimation of nonlinear mcchanical plants.
The RNN model is leamed by the second order recursive lcaming algoritm of
Levenberg-Marquardt (L-M). The estimated states of the recurrent ncural net-
work model are used for direct adaplive trajectory tracking control systcms de-
sign. The system contains also a noise rejection output filter. The applicability of
the proposed ncural control system is confirmed by simulation results with
MIMO mechanical plant and compared with the results obtained by the Back-
propagation lcaming algorithm. The results show a good convergence of both al-
gorithms with priority of the L-M algorithm.

1. Introduction

The recent advances in understanding of the working principles of artificial neural
networks (ANN) and the rapid growth of available computational resources led to the
development of a wide number of ANN-based modeling, identification, prediction and
control applications, [1]-[6], especially in the ficld of mechanical engineering and
robotics. The ability of ANN to approximate complex non-linear relationships without
prior knowledge of the model structure makes them a very attractive alternative to
classical modeling and control techniques. Many of the applications currently reported
are based on the classical Nonlinear Autoregressive Moving Average (NARMA)
model, where a Feedforward Neural Network (FFNN) is implemented, [4], [5]. [6).
However, the FFNN has in general a static structure, thercfore it is adequate to ap-
proximate mainly static (nonlinear) relationships and their real-time applications for
dynamical systems require the introduction of external time-delayed feedbacks. [5].
The application of the FFNN for modeling, identification and control of nonlincar
dynamic plants caused some problems which could be summarized as follows: 1. The
dynamic systems modcling usually is based on the NARMA model which need some
information of input/output mode! orders, and input and output tap-delays ought to be
used, [5], [6]; 2. The FFNN application for Multi-Input Multi-Output (MIMO) systems
identification needs some relative order structural information: 3. The ANN model
structure ought to correspond to the structure of the identified plant where four differ-
ent input/output plant models are used. [5); 4. The lack of universality in ANN archi-
tectures caused some difficultics in its leaming and a Backpropagation through time
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be used. [7]); 5. Most of NARMA-based ANN models are
sequential in nature and introduced a relative plant-dependent time-delay; 6. Most of
the ANN-based modcls are nonparametric ones. [5]. and so, not applicable for an indi-
rect adaptive control systems design; 7. All this ANN-based models does not perform
state and parameter estimation in the same time, [4]; 8. All this models are appropriate
only for identification of nonlinear plants with smooth, single, odd, nonsingular

nonlinearitics.

Recurrent Neural Networks
so they are promising alternative for system id
when the task is to model dynamical systems [2], [3], [4], [7). Their main advantage is

the reduced complexity of the network structure. However, the analysis of state of the
art in the area of classical RNN-based modeling and control has also shown some of
their inherent limitations as follows: 1. The RNN input vector consists of a number of
past system inputs and outputs and there is not a systematic way to define the optimal
number of past values [4] and usually, the method of trials and errors is performed; 2.
The RNN model is naturally formulated as a discrete model with fixed sampling pe-
riod, therefore. if the sampling period is changed, the network has to be trained again;
3. It is assumed that the plant order is known, which represents a quite strong modeling
assumption in general, [5]. Driven by these limitations, a new Recurrent Trainable
Neural Network (RTNN) topology and the recursive Backpropagation (BP) type learn-
ing algorithm in vector-matrix form was derived, [8), [9), [10]. and its convergence
was studied, [9). But the recursive BP algorithm, applied for RTNN learning, is a gra-
dient descent first order learning algorithm which not permits to augment the precision
and to accelerate the leaming. So, the aim of the paper is to apply for RTNN leaming a
second order algorithm like the Levenberg-Marquardt (L-M) algorithm, [11], [12],
(13}, it is. The RTNN and the L-M algorithm of its learning will be applied for identi-
fication and control of a mechanical MIMO plant, taken from [6].

learning algorithm needs to

(RNN) possesses its internal time-delayed feedbacks,
entification and control, particularly

2. Topology and Learning of the RTNN

RTNN Topology: A Recurrent Trainable Neural Network model and its learning algo-
rithm of dynamic Backpropagation-type, together with the explanatory figures and
stability proofs, are described in [9]. The RTNN topology, given in vector-matrix form

is described by the following equations:

X(k+1)= AX(k)+BU(K) )
Z(k)=S[X(k)] (2)

Y (k)= S[CZ(k)) 3)

A= block—diag(4,);] 4, <1 4)

Where: Y, X, and U are, respectively, output, state and input vectors with dimensions /,
n, m; A is a (nxn)- state block-diagonal weight matrix; 4 is an i-th diagonal block of 4
with (/x/) dimension. Equation (4) represents the local stability conditions, imposed
on all blocks of 4; B and C are (nxm) and (/xn)- input and output weight matrices; S is
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vector-valued sigmoid or hyperbolic tangent-activation function, [9); & is a discrete-
time variable. The stability of the RTNN model is assured by the activation functions
and by the local stability condition (4).

BP Learning of the RTNN: The commonly used BP updating rule, [9]. is given by:
Wy(k+1) = Wy (k) + nAW, (k) + ad W, (k - 1) (5)

Where: Wj; is a general weight, denoting each weight matrix element (Cy, 4. B,) in the
RTNN model, to be updated; 4W,; (4Cy, AJ, 4B,), is the weight correction of Wy,

while; 17 and a are learning rate parameters. The weight updates are computed by the
following equations:

AC, (k)= [T, (k)-Y,(k)IS [, (K))Z, (k) (6)
AA, (k)= RX,(k-1) ©)
R=C,(b)T(k)-Y(k))S,(Z, (k)] ®)
AB, (k)= RU, (k) 9

Where: A4, 4B,, AC, are weight corrections of the weights Ay B, C,, respectively;
(T-Y) is an ermor vector of the output RTNN layer, where T is a desired target vector
and Y is a RTNN output vector, both with dimensions I; X, is an i-th element of the
state vector; R is an auxiliary variable; S;" is derivative of the activation function. Sta-
bility proof of this learning algorithm is given in [9). The described above RTNN is
applied for identification and adaptive control of a nonlinear MIMO plant.

Recursive Levenberg-Marquardt Algorithm for RTNN Learning: The recursive L-
M algorithm of learning, [11], [12], [13], is given by the following equations:

Wk +1)=W(k)+ P(k)VY[ (k)Je[¥ (k)] (10)
Y[W (k)] = g[W (k),U (k)] am
EW (k)= €W (k)] ={glW(k),UK)]- Y, (K))? (12)
0 (13)
VYW (k))= —&lW,U(k)]
oW i iy
The Jacobean matrix elements for the RTNN topology are as follows:
VYAC, ()= S, (Y,(k))Z, (k) (14)
VYI4,(0)= R X, (k-1) (15)
VY,[B,(k))= RU, (k) (16)

R =C,(k)S(Z,(k)) 17
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So the Jacobean matrix could be formed as:

VYW (k)] = [V Y (C, (k). VY, (A, k), VY, (B, (k)] 18)
The P(k). S(.), and €(.) matrices arc given as follows:
P(k)= a'(I/S{P(k —1)= Pk =1)QIW ()] S™ W (O1QT W (k)] P(k = 1)} (19)
SIW (k)] = a(k)A(k)+ QT [W (k)] Ptk =AW (k)] (20)
VYT [W (k)] i [1 o]
QW (k)] = AK) = ;
(k)] [0 1 i *"=14 g @n

0.97 <a(k)<1
The next part compares the simulation results obtained with both BP and L-M learning
algorithms for MIMO nonlinear plant.

3. Direct Adaptive Neural Control System Structure

ntrol system is given on Figure 2. It contains a recurrent
neural identifier RTNN-1, two neural controllers (feedback and feedforward) RTNN-2,
RTNN-3, and a low pass noise rejection filter. In the direct adaptive neural control, the
weight parameters of the feedback and feedforward controllers are learned so to mini-
mize the cost function which is the reference tracking quadratic instantancous error of

the plant output.

The block-diagram of the co

EW"
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R(K) %M y %18 v
. R743 Plant %—EE L
E® -\
L3
YK t

S RTNN-1 —
P =
g E'
, R A ®

Fig. 1. Block - diagram containing ncural identifier, feedback and feedforward neural control-
lers, and plant output noise rejection filter.

The structure of the closed loop system contains a neural identifier issuing an estimated
state vector to the feedback neural plant dynamics compensator. The control feedback
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signal is added to the signal of the feedforward neural controller. The feedforward
controller represented in fact an inverse model of the feedback closed loop system and
depends on the reference signal. The system is completed by a low-pass filter which is
aimed to reject the plant and measurement noises. S0, the RTNN-1 identified the com-
bined dynamics of the plant and the filter, and estimates the stated of this complex
dynamics. The plant and the filter (this also includes the input and output noises) are
described by the following state-space nonlinear models:

X, (k+1)= FLX, (k),U(K).V, (k)) 22)

Y, (k)=p(X, (x)) =

Y (K)=Y,(k)+¥, 29)

Y (k+1)= AV (k)+ BY, (k)= A" (k) + BY, (k)+ B, (25)

Here the input, output and state dimensions of the plant are m, /, n,. The filter dynamics
is completely decupled, so the state matrix is diagonal (/x/) one. The plant equations
(22) and (23) could be lincarized and written in the same state-space form as:

X, (k+1)=4,X (k)+BU(k)+ B,V (k) e
Y, (k)=C,X, (k) 27)

The linearized identification RTNN-1 could be also described by a state space model:

X' (k+1)=A'X'(k)+BU(k) (28)
Y'(k)=C'X' (k) (29)
Here the input, output and state dimensions of the RTNN-1 are m, I, n,. The feedback

neural RTNN-2 controller has a similar linearized state space representation, which
input is the estimated systems state, issued by the RTNN-1

Xy (k)= A, X, + B X' (k) (30)
Uy (k)==C X<, (K) GhH

Here the input, output and state dimensions of the RTNN-2 are n;, m, np. The feedfor-
ward neural RTNN-3 controller could be described in the same manner as:

Xy (ke0)=a) X, + B R(k) (32)
U, (k)=C,, X, (k) (33)
Here the input, output and state dimensions of the RTNN-3 are I, m, ng.

Let us to write the following z-transfer functional representations of the given up
state-space equations for the plant, filter, feedback and feedforward controllers:
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(34)

W’ (:)=C"(z1-4,)" B:W (k)=C (r-a)' BP()=(1-4)' B
(35)

- -1
0, (z)=C", (=1~ A.) 'B,,:0,(=)=C", (s1-4, ) B,
(35) are connected by the following

The control systems z-transfer functions (34),
equations. given in z-operational form:

Y ()= W' ()Y, + W (X (=)= P (:)U ) (36)
U,(2)=-0 () X' ()i, ()= (=)R(=) (37)
(38)

Y, (z)=W,(z)U(z)+W,} (=):U(2)=U,,()+U, (z)
Effectuating some substitutions and mathematical manipulations we could obtain the
following statement for the systems control variable:

U(=)=[1+0. ()P ()] @:(IRE) (39)

The substitution of the control into the plant equation yields:
1,(=)=w, ([ 1+0,()P ()] @ (RE)+ W, (W)

n into the systems output equation finally gives:

(40)

The substitution of the plant equatio

Y ()= W ()W, (U +0, ()P ' (2)R(z)+K () (4n)
Where ¥3(,) is a generalized noise term, given as:
v (=)= ()0, ()1 (2)+ 1 (=)

ntrollable and observable, [9], and the L-M algorithm of
so the identification and control errors tend to zero
(k)0 k —»o) which means

(42)

The RTNN topology is co
learning are convergent,
(E(k)=Y (K)-Y' (k) >0 k>3 E°(k)=R(K)-Y"
that cach transfer functions given by equations (34), (35) is stable with minimum
phase. From (41) it is seen that the dynamics of the stable low pass filter is independent
from the dynamics of the plant and it does not affects the stability of the closed-loop
system. The closed-loop system is stable and the RTNN-2 controller compensates the
combined “plant plus filter” dynamics. The RTNN-3 feedforward controller dynamics
is an inverse dynamics of the closed-loop systems one, which assure a precise refer-
ence tracking in spite of the presence of process and measurement noises.



RNN Identification and Control of Nonlincar Plants Using... 157
4. Simulation Results

Let us consider the MIMO mechanical plant governed by the following state-space
discrete-time nonlincar dynamics equations, taken from (6]

X, (k+1)= 0,9X,(I()sin[X,(k)]+[2+ | .SM]U, +[x, (k)+ M]y, “3)

1+ X7U% (k) 14+ X2 (k)
X3 (k+1)= X, (k) 1 +sinf2.X, (K))} +% (44)
Xy (k+1)={3+sin[2, (kN))U, (k) (45)
Y (k)= X, (k): Y, (k)= X, (k) (46)

The input, output and state dimensions of the plant are 2, 2, and 3. The refercnce sig-
nals R,, R, of the control system are chosen as:

R, (k)=0.007sin(7k/1 0)+0.0075sin(rk / 25) +0.006sin(k / 50)

@n
R, (k) = 0.0075sin(k/40)+ 0.007 sin(k / 60)+ 0.006sin(xk /80)

(48)
The control systems structure was applied to the given up plant and the results of its
functioning are given on Fig. 2, Fig.3, Fig. 4 for BP and L-M learning applied for

systems with 10% process and measurement noises, with and without noise filter. The
results obtained for control MSE% are summarized in Table 1.

Table 1. The MSE% of control given for BP and L-

M algorithms of leaming for control systems
with and without noise filter
Lcarning / noise filtering MSEI (%) MSE2 (%)
BP with filter 091 0.72
BP without filter 1.28 2.19
L-M with filter 0.66 0.64
L-M without filter 1.03 1.41

The results show the good convergence of both learning algorithms. The noise terms
augmented the MSE% of control in both cases for systems without noise filters. The L-
M algorithm of learning is more precise but more complex that the BP one.

S. Conclusions

The paper proposed a new RTNN model for systems identification and states estima-
tion of nonlinear mechanical plants. The RTNN is learned by the second order recur-
sive learning algorithm of Levenberg-Marquardt. The estimated states of the recurrent
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neural network model are used for direct adaptive trajectory tracking control systems
design. The system contains also a noise rejection outpul filter, which dynamics is
separated from the dynamics of the control system. The applicability of the proposed
neural control system is confirmed by simulation results with a MIMO mechanical
plant and compared with the results obtained by the BP learning algorithm. The results
summarized in Table 1 show good convergence of both L-M and BP learning algo-
rithms. The presence of noise terms augmented the MSE% of control in both cases of
systems without noise filters. The L-M algorithm of learning is more precise but more

complex then the BP one.
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Fig. 2. Comparative results of a direct adaptive trajectory tracking control with BP lcarning, with
(a,b) and without (c,d) noise filtering: a) Comparison between the first plant output Ypl(doted
line, d-1) and the reference signal R1 (continuous line, c-1) for the case of system with noise
filtering; b) Comparison between the second plant output Yp2 (d-1) and the reference signal R2
(c-1) for the case of system with noise filtering; c) Comparison between the first plant output
Ypl(d-1) and the reference signal R1 (c-1) for the case of system without noise filtering; d) Com-

parison between the second plant output Yp2 (d-1) and the reference signal R2 (c-1) for the case

of system without noise filtering.
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Fig. 3. Comparative results of a direct adaptive trajectory tracking control with L-M lcaming
with (a,b) and without (c.d) noise filtering; a) Comparison between the first plant output Ypl(d-
1) and the reference signal R1(c-1) for the case of system with noise filtering; b) Comparison
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between the second plant output Yp2(d-1) and the reference signal R2(c-1) for the case of system
with noisc filtering: ¢) Comparison between the first plant output YpI(d-l) and the reference
signal R1(c-]) for the case of system without noisc filtering; d) Comparison between the second
plant output Yp2(d-l) and the reference signal R2(c-1) for the casc of sysicm without noise

filtering.
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Fig. 4. Some additional results of a direct adaptive trajectory tracking control with L-M learning
with noise filtering; a) Comparison between the first plant output Yp1 (c-1) and the first output
Yil (d-1) of the identification RTNN-1; b) Comparison between the second plant output Yp2 (c-
1) and the second output Yi2(d-1) of the identification RTNN-1; c) First control signal Ul; d)
Sccond control signal U2; ) Mcan squared crror of control (MSE1%) for the first controlled

output; f) Mean squared error of control (MSE2%) for the second controlled output; g) Systems
state variables, estimated by RTNN-1.
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