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Abstract. The paper proposed a new Recurrent Neural Network (RNN) model
for systems identification and states estimation of nonlinear mechanical plants.
The RNN model is learned by the second order recursive lcarning algoritm of
Levenberg-Marquardt (L-M). The estimated states of the recurrent neural net-
work model are used for direct adaptive trajectory tracking control systems de-
sign. The system contains also a noise rejection output filter. The applicability of
the proposed neural control system is confirmed by simulation results with
MIMO mechanical plant and compared with the results obtained by the Back-
propagation learning algorithm. The results show a good convergence of both al-
gorithms with priority of the L-M algorithm.

1. Introduction

The recent advances in understanding of the working principles of artificial neural
networks (ANN) and the rapid growth of available computational resources led to the
development of a wide number of ANN-based modeling, identification, prediction and
control applications, [1]-[6], especially in the field of mechanical engineering and
robotics. The ability of ANN to approximate complex non-linear relationships without
prior knowledge of the model structure makes them a very attractive alternative to
classical modeling and control techniques. Many of the applications currently reported
are based on the classical Nonlinear Autoregressive Moving Average (NARMА)
model, where a Feedforward Neural Network (FFNN) is implemented, [4], [5]. [6].
However, the FFNN has in general a static structure, therefore it is adequate to ap-
proximate mainly static (nonlinear) relationships and their real-time applications for
dynamical systems require the introduction of external time-delayed feedbacks. [5].
The application of the FFNN for modeling, identification and control of nonlinear
dynamic plants caused some problems which could be summarized as follows: 1. The
dynamic systems modeling usually is based on the NARMA model which need some
information of input/output model orders, and input and output tap-delays ought to be
used, [5], [6]; 2. The FFNN application for Multi-Input Multi-Output (MIMO) systems
identification needs some relative order structural information: 3. The ANN model
structure ought to correspond to the structure of the identified plant where four differ-
ent input/output plant models are used. [5]; 4. The lack of universality in ANN archi-
tectures caused some difficulties in its learning and a Backpropagation through time
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learning algorithm needs to be used. [7]; 5. Most of NARMA-based ANN models are

sequential in nature and introduced a relative 
plant-dependent time-delay; 6. Most of

the ANN-based models are nonparametric 
ones. [5]. and so, not applicable for an indi-

rect adaptive control systems design; 7. All this ANN-based models does not perform

state and parameter estimation in the same time, [4]; 8. All this models are appropria
te

only for identification of nonlinear plants w
ith smooth, single, odd, nonsingular

nonlinearities.

Recurrent Neural Networks (RNN) possesse
s its internal time-delayed feedbacks,

so they are promising altemative for 
system identification and control, particul

arly

when the task is to model dynamical systems [2], [3], [4], [7]. Their main advantage is

the reduced complexity of the network structure. However, the analysis of state of the

art in the area of classical RNN-based mode
ling and control has also shown some of

their inherent limitations as follows
: 1. The RNN input vector consists of a number of

past system inputs and outputs and there is not a systematic way to define t
he optimal

number of past values [4] and usually, the method
 of trials and errors is performed; 2.

The RNN model is naturally formulated as a discrete mo
del with fixed sampling pe-

riod, therefore, if the sampling period is changed, the network h
as to be trained again;

3. It is assumed that the plant order is known, which represents a quite strong modeling

assumption in general, [5]. Driven by these 
limitations, a new Recurrent Trainabl

e

Neural Network (RTNN) topology and the recursive Backpropagation 
(BP) type learn-

ing algorithm in vector-matrix form was derived,
 [8], [9], [10], and its convergence

was studied, [9]. But the recursive BP algorithm, applied for RTNN learning, is a gra-

dient descent first order learning algorithm which not permits to augment the precision

and to accelerate the learning. So, the aim of the paper is to apply for RTNN leaming a

second order algorithm like the Levenberg-Marquar
dt (L-M) algorithm, [11], [12],

[13], it is. The RTNN and the L-M algorithm of its learning will be applie
d for identi-

fication and control of a mechanical MIMO plant, taken from [6].

2. Topology and Learning of the RTNN

RTNN Topology: A Recurrent Trainable Neural Network model and its learning algo-

rithm of dynamic Backpropagation-type, together with the explanatory
 figures and

stability proofs, are described in [9]. The RTNN topology, given in vector-matrix form

is described by the following equations:

X(k +1) = AX (k)+ BU(K)

Z(k)= S[X(k)]

Y(k) = S[CZ(k)]

A = block - diag(A,);| A, |<1

(1)

(2)

(3)

(4)

Where: Y, X, and U are, respectively, output, state and input vectors with dimensions /,

n, m; A is a (nxn)- state block-diagonal weight matrix; A, is an i-th diagonal block ofA

with (1x1) dimension. Equation (4) represents the local stability 
conditions, imposed

on all blocks of A; B and C are (nxm) and (lxn)- input and output weight matrices; S is
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between the second plant output Yp2(d-l) and the reference signal R2(c-1) for the case of system
with noise filtering: c) Comparison between the first plant output Yp1(d-1) and the reference
signal R1(c-l) for the case of system without noise filtering: d) Comparison between the second
plant output Yp2(d-l) and the reference signal R2(c-l) for the case of system without noisefiltering.
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Fig. 4. Some additional results of a direct adaptive trajectory tracking control with L-M learning
with noise filtering; a) Comparison between the first plant output Yp1 (c-l) and the first output
Yil (d-l) of the identification RTNN-1; b) Comparison between the second plant output Yp2 (c-
1) and the second output Yi2(d-1) of the identification RTNN-1; c) First control signal U1; d)
Second control signal U2; e) Mean squared error of control (MSE1%) for the first controlled
output; f) Mean squared error of control (MSE2%) for the second controlled output; g) Systems
state variables, estimated by RTNN-1.

Acknowledgements

We want to thank CONACYT-MEXICO for the scholarship given to Saul Fernando
Escalante Magana, MS student and Carlos Roman Mariaca Gaspar, PhD student, both
students at the CINVESTAV-IPN, MEXICO.



160 Ieroham Baruch, Saul Escalante and Carlos R. Mariaca

References

[1] Miller III, W.T., Sutton, R.S., Werbos P.J. (1992). Neural Networks for Control, MIT
Press, London.

[2] Chen, S., Billings, S. A. (1992). Neural Networks for Nonlinear Dynamics System Model-

ing and Identification. International Journal of Control, 56:319-346.

[3] Pao, S.A., Phillips, S.M., Sobajic, D. J. (1992). Neural Net Computing and Intelligent

Control Systems. International Journal of Control, 56:263-289.

[4] Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J. (1992). Neural Network for Con-

trol Systems - A Survey. Automatica, 28 (6):1083-1112.

[5] Narendra, K.S., Parthasarathy, K. (1990). Identification and Control of Dynamic Systems

Using Neural Networks. IEEE Transactions on Neural Networks, 1(1):4-27.

[6] Narendra K., Mukhopadhyay S. (1994). Adaptive Control of Nonlinear Multivariable

Systems using Neural Networks. Neural Networks, 737-752.

[7] L. Jin, and M. Gupta (1999). Stable Dynamic Backpropagation Learnin
g in Recurrent

Neural Networks. IEEE Transactions on Neural Networks, 10:1321-1334.

[8] Baruch I., J.M., Flores, F., Thomas and R. Garrido. (2001). Adapti
ve Neural Control of

Nonlinear Systems. In: Dorffner, G., Bischof, H., Hornik, K.
 (eds.): Artificial Neural

Networks-1CANN 2001, Lecture Notes in Computer Science Vol. 2130. Springer, Berlin,

pp. 930-936.

[9] Baruch, 1. S., Flores, J. M., Nava, F., Ramirez, I. R., Nenkova, В. (2002). An Adavanced

Neural Network Topology and Learning, Applied for Identification and Control of a D.C.

Motor. In: Sgurev, V.S., Jotsov, V. (eds.): Proc. of the First Int. IEEE Symposium on In-

telligent Systems, Varna, Bulgaria, pp. 289-295.

[10] Flores, J. M., Baruch, I., Garrido, R. (2001). Red Neuronal Recurrente para Identificación

y Control de Sistemas No Lineales. Cientifica-ESIME-IPN, 5 (1):11-20.

[11] Asirvadam, V. S., McLoone, S. F. and Irwin G. W. (2002). Parallel and Separable Recur-

sive Levenberg-Marquardt Training Algorithm. In: Proceedings of the 200
2 12th lEEE

Workshop on Neural Networks for Signal Processing, pp. 129-138.

[12] Ngia, L. S., Sjöberg J., and Viberg, M. (1998). Adaptive Neural Nets Filter Using a Re-

cursive Levenberg Marquardt Search Direction. IEEE Signals, Systems and Computer, 1:

697-701.

[13] Ngia, L. S., Sjöberg, J. (2000). Efficient Training of Neural Nets for Nonlinear Adaptive

Filtering Using a Recursive Levenberg Marquardt Algoritm. IEEE Trans. on Signal Proс-

essing, 48:1915-1927.


